THINK ALOUD: EXPOSITION (GENRE) COMPARISON (TEXT STRUCTURE) AND MEANING AND EFFECT (GENERALIZATIONS)

A Short History of Nearly Everything by Bill Bryson

17 INTO THE TROPOSPHERE

THANK GOODNESS FOR the atmosphere. It keeps us warm. Without it, Earth would be a lifeless ball of ice with an average temperature of minus 60 degrees Fahrenheit. In addition, the atmosphere absorbs or deflects incoming swarms of cosmic rays, charged particles, ultraviolet rays, and the like. Altogether, the gaseous padding of the atmosphere is equivalent to a fifteen-foot thickness of protective concrete, and without it these invisible visitors from space would slice through us like tiny daggers. Even raindrops would pound us senseless if it weren't for the atmosphere's slowing drag.

The most striking thing about our atmosphere is that there isn't very much of it. It extends upward for about 120 miles,

1		
2.		
12.		
10		

which might seem reasonably bounteous when viewed from ground level, but if you shrank the Earth to the size of a standard desktop globe it would only be about the thickness of a couple of coats of varnish.

For scientific convenience, the atmosphere is divided into four unequal layers: troposphere, stratosphere, mesosphere, and ionosphere (now often called the thermosphere). The troposphere is the part that's dear to us. It alone contains enough warmth and oxygen to allow us to function, though even it swiftly becomes uncongenial to life as you climb up through it. From ground level to its highest point, the troposphere (or "turning sphere") is about ten miles thick at the equator and no more than six or seven miles high in the temperate latitudes where most of us live. Eighty percent of the atmosphere's mass, virtually all the water, and thus virtually all the weather are contained within this thin and wispy layer. There really isn't much between you and oblivion.

Beyond the troposphere is the stratosphere. When you see the top of a storm cloud flattening out into the classic anvil shape,

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

you are looking at the boundary between the troposphere and stratosphere. The invisible ceiling is known as the tropopause and was discovered in 1902 by a Frenchman in a balloon, Leon-Philippe Teisserenc de Bort. Pause in this sense doesn't mean to stop momentarily but to cease altogether; it's from the same Greek root as *menopause*. Even at its greatest extent, the tropopause is not very distant. A fast elevator of the sort used in modern skyscrapers could get you there in about twenty minutes, though you would be well advised not to make the trip. Such a rapid ascent without pressurization would, at the very least, result in severe cerebral and pulmonary edemas, a dangerous excess of fluids in the body's tissues. When the doors opened at the viewing platform, anyone inside would almost certainly be dead or dying. Even a more measured ascent would be accompanied by a great deal of discomfort. The temperature six miles up can be -70 degrees Fahrenheit, and you would need, or at least very much appreciate, supplementary oxygen.

After you have left the troposphere the temperature soon warms up again, to about 40 degrees Fahrenheit, thanks to the

33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45 46	
46	
47	
48	
49	
50	
51	
52	

absorptive effects of ozone (something else de Bort discovered on his daring 1902 ascent). It then plunges to as low as -130 degrees Fahrenheit in the mesosphere before skyrocketing to 2,700 degrees Fahrenheit or more in the aptly named but very erratic thermosphere, where temperatures can vary by a thousand degrees from day to night-though it must be said that "temperature" at such a height becomes a somewhat notional concept. Temperature is really just a measure of the activity of molecules. At sea level, air molecules are so thick that one molecule can move only the tiniest distance-about three-millionths of an inch, to be precise-before banging into another. Because trillions of molecules are constantly colliding, a lot of heat gets exchanged. But at the height of the thermosphere, at fifty miles or more, the air is so thin that any two molecules will be miles apart and hardly ever come in contact. So although each molecule is very warm, there are few interactions between them and thus little heat transference. This is good news for satellites and spaceships because if the exchange of heat were more efficient any man-made object orbiting at that level would burst into flames.

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

Hillocks Questioning Hierarchy for Troposphere

Directions: Working in Pairs: Verify that each question is the type indicated and explain how

you know. Then answer the question and reflect on what you had to do to answer each question type.

Level 1: Basic stated information

What are the four layers of the atmosphere? How are they layered from the ground up?

Level 2: Key details

Why does Bryson argue that the troposphere is "dear to us" as human beings?

Level 3: Stated relationships (comparison)

What is the relationship between temperature in the atmosphere and molecules in the air?

Level 4: Simple implied relationships

Why aren't all layers of the atmosphere habitable by humans?

Level 5: Complex implied relationships

In what various ways can the atmosphere be considered both thick and thin? Cite some examples of comparisons that Bryson uses. What might be the functional effects of this thinness and thickness?

Level 6: Authorial generalization

What might Bryson say about our relationship with, dependence on, and responsibility toward the atmosphere?

Level 7: Structural generalization

How does Bryson use comparisons to help the reader understand characteristics of the atmosphere's layers and how

dependent we are on the atmosphere?